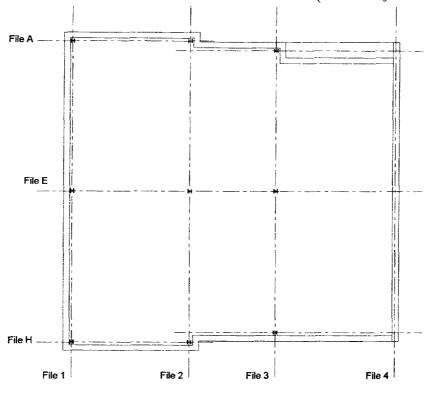


Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

Pour en savoir plus sur nos formations disponibles, veuillez visiter : <u>www.formav.co/explorer</u>


PARTIE A: MECANIQUE

ON DONNE:

Le dossier de plans Les extraits de note de calcul Des extraits des règles CM 66 + additif 80 Des tableaux de profilés

Présentation de l'étude proposée

Cette étude concerne le poteau central du bâtiment au Rez-de-chaussée. Ce poteau est situé à l'intersection des file E et file 2 au **niveau bas du Rez-de-chaussée**. (hauteur l_0 =2.50 m)

Plan d'implantation des poteaux

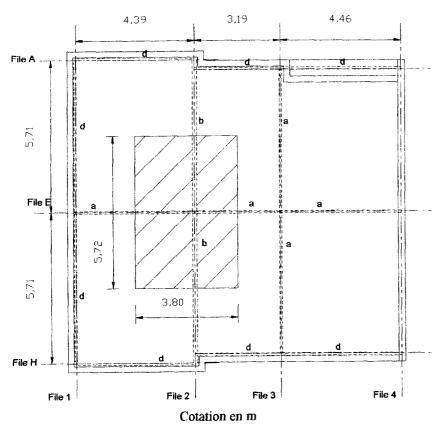
ON DEMANDE:

Questions:

A1 D'après les renseignements donnés en annexe, déterminer les charges permanentes et les charges variables sollicitant le poteau E2 (charges de plancher uniquement).

A2 Déterminer la charge pondérée N engendrée par les planchers et la couverture à la base du RdC.

A3 Déterminer les profilés de type IPE puis HEA qui constituent le poteau si celui-ci est supposé sollicité en compression simple avec N=51083,6 daN. Valeur maximale de la contrainte $\sigma_{e=235 MPa}$


A4 Vérifier en compression avec risque de flambement les profilés HEA 140 et IPE 240.

A5 En considérant que le coût du poteau est lié à sa masse linéaire, choisir le profilé que l'on devrait utiliser (choix entre HEA ou IPE)

*	
Rei	nere
1/0	

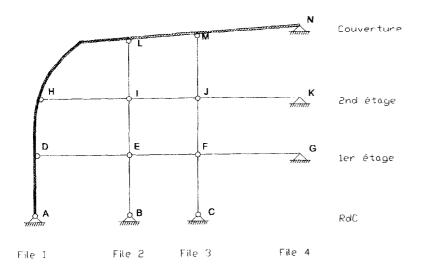
ECETUTC BTS - EEC	Sous-épreuve U. 51	Session 2002	Page: 12/21

ANNEXES DE MECANIQUE

Détail des éléments de structure horizontale : Les repères a, b et d représentent :

> a: IPE 200 b: IPE 360 d: UAP 200

La zone hachurée représente la surface de reprise du poteau pour 1 niveau.


Hypothèses concernant les charges à considérer :

Charges permanentes:

- masse volumique du béton 2500 kg/m3 (épaisseur des planchers : 20 cm)
- poids propre de cloison et revêtement de sol : 70 daN/m² de plancher (correspondant aux cloisons intérieures à chaque logement)
- masse linéaire des cloisons séparatrices des logements cotées 24 cm sur les plans : 250 kg/ml
- masse des poutres métalliques (voir tableaux de profilés).

Charges variables:

 charges d'exploitation des logements : 150 daN/m²

Extraits de la note de calcul

La note de calcul fait apparaître pour les charges de toiture pondérées au nœud L un effort de 3600 daN sollicitant le poteau LI en compression

Le poids propre des poteaux sur la hauteur du bâtiment est estimé à 200 daN non pondéré.

Schéma mécanique du portique constituant la file E

VALEURS DES COEFFICIENTS DE PONDÉRATION A CONSIDERER

Dans les calculs de vérification de la stabilité (stabilité d'ensemble aussi bien que résistance des éléments), les effets à prendre en compte doivent être envisagés de façon à obtenir les combinaisons les plus défavorables, leurs valeurs étant multipliées par les coefficients de pondération suivants :

- 1 Charges permanentes (poids mort, influence du mode de construction) : soit 1.35, soit 1, suivant ce qui est le plus défavorable.
- 2 Surcharges variables : (charges d'exploitation ou d'essais, charges normales de neige, charges normales de vent) : 1.5

Repére			·
ECETUTC BTS - EEC	Sous-épreuve U. 51	Session 2002	Page: 13 / 21

Extraits du CM66 additif 80

Résistance au flambement

Eléments simplement comprimés

La sollicitation N de compression simple sous charges pondérées doit satisfaire à la condition suivante :

$$k_0 \frac{N}{N_p} \le 1$$
 avec $N_p = A.\sigma_e$

Le coefficient $\mathbf{k_0}$ est obtenu à partir du tableau cidessous en fonction du plus grand des élancements réduits $\overline{\lambda_x}$ et $\overline{\lambda_y}$ où :

$$\overline{\lambda x} = \frac{\lambda x}{\pi} \sqrt{\frac{\sigma_e}{E}} \text{ et } \overline{\lambda y} = \frac{\lambda_y}{\pi} \sqrt{\frac{\sigma_e}{E}}$$

$$\lambda x = \frac{l}{lx} \text{ et } \lambda_y = \frac{l}{ly}$$

 $\sigma e=235MPa$

 $E=2,1\ 10^5\ Mpa$

$\bar{\lambda}$	0	0.01	0,02	0.03	0,04	0,05	0,06	0,07	0.08	0.09
0,0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
0.1	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
0,2	1,00	1,00	1,01	1,01	1,01	1,02	1,02	1,02	1,03	1,03
0,3	1,04	1,04	1,04	1,05	1.05	1,06	1,06	1,07	1,07	1,08
0,4	1,08	1,09	1,09	1,10	1,10	1,10	1,11	1,11	1,12	1,12
0.5	1.13	1,14	1,14	1,15	1,15	1,16	1,17	1,17	1,18	1,19
0,6	1,19	1,20	1,21	1,22	1,22	1,23	1,24	1,25	1,26	1,27
0,7	1,27	1,28	1,29	1,30	1,31	1,32	1,33	1,34	1,35	1,36
0,8	1,38	1,39	1,40	1,41	1,42	1,44	1,45	1,46	1,48	1,49
0,9	1,51	1,52	1,54	1,55	1,57	1,59	1,60	1,62	1,64	1,65
1.0	1,67	1,69	1,71	1,72	1,74	1,76	1,78	1,80	1,82	1.84
1,1	1,86	1,88	1,90	1,92	1,94	1, 9 7	1,99	2,01	2,03	2,06
1,2	2,08	2,10	2,13	2,15	2,18	2,20	2,23	2,25	2,28	2,31
1,3	2,33	2,36	2,39	2,41	2,44	2,47	2,50	2,52	2,55	2,58
1,4	2,61	2,64	2,67	2,70	2,73	2,76	2,79	2,82	2,85	2,89
1,5	2.92	2,95	2,98	3,01	3,05	3,08	3,11	3,15	3,18	3,21
1,6	3,25	3,28	3,32	3,35	3, 39	3,43	3,46	3,50	3,54	3,58
1,7	3,62	3,65	3,69	3,73	3,77	3,82	3,84	3,88	3,92	3,96
1,8	4,00	4,04	4,07	4,11	4,15	4,19	4,23	4,27	4,32	4,36
1,9	4,40	4,44	4,48	4,53	4,57	4,61	4,66	4,70	4,74	4,79
2,0	4,83	4,87	4,92	4,96	5, 00	5,05	5, 09	5,13	5,18	5,22
2,1	5,27	5,32	5,36	5,41	5,46	5,50	5,54	5,59	5,63	5,68
2,2	5,73	5,78	5,83	5,88	5, 9 2	5,97	6,0 2	6,07	6,12	6,17
2,3	6,22	6,27	6.33	6,38	6,43	6,49	6,54	6,59	6,64	6,69
2,4	6,74	6,80	6,85	6,90	6,95	7,01	7,06	7,11	7,16	7,21
2,5	7.26	7.32	7.37	7,43	7.49	7,54	7.58	7.63	7,67	7.73

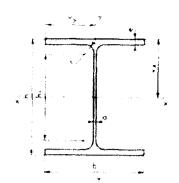
On désigne par :

A

l'aire de la section brute de la pièce;

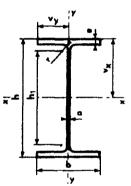
le moment d'inertie de la section par rapport à un axe passant par son centre de gravité et perpendiculaire au plan dans lequel on étudie le flambement

 $i = \sqrt{\frac{I}{4}}$


le rayon de giration correspondant de la section;

Longueur de flambement -Élancement

La longueur de flambement l d'une pièce articulée aux deux extrémités est égale à la longueur réelle l_o de la pièce.


Rep	ère

- topoto				
ECETUTE BTS - EEC	Sous-épreuve U. 51	Session 2002	Page: 14/21	

caractéristiques des profils HEA

			t	Dimension	ıs		Masse				Carac	téristiques 1	apportées à	l'axe neu	itre		
Profils	h	b mm	a	e mm	um 1	Partie droite de l'âme h ₁ mm	par mètre P kg	par Section mètre A P	L _x	$\frac{I_x}{v_x}$ cm ³	i, cm	Moment statique S cm³	Distance des centres cm	η,	I _y	I, V, cm³	i, cm
100	96	100	5	8	12	56	16.7	21,2	349	73	4,06	41,5	8,4	4,37	134	27	2,51
120	114	120	5	8	12	74	19.9	25,3	606	106	4,89	59,7	10,1	5,35	231	38	3,02
140	133	140	5.5	8.5	12	92	24,7	31,4	1 033	155	5,73	86,7	11,9	6,27	389	56	3,52
160	152	160	6	9	15	104	30,4	38,8	1 673	220	6.57	123	13,6	7,24	616	77	3,94
180	171	180	6	9.5	15	122	35,5	45,3	2510	294	7,45	162	15,5	8,28	925	103	4,52
200	190	200	6.5	10	18	134	42,3	53,8	3 692	389	8,28	215	17,2	9,20	1 336	134	4,90
220	210	220	7	11	18	152	50,5	64,3	5 4 10	515	9,17	284	19.0	10,20	1 955	178	5,51
240	230	240	7,5	12	21	164	60,3	76,8	7 763	675	10,1	372	20,9	11,19	2 769	231	6,00
260	250	260	7,5	12,5	24	177	68,2	86,8	10 460	836	11,0	460	22,7	12,26	3 668	282	6.50
280	270	280	8	13	24	196	76,4	97.3	13 670	1 010	11,9	556	24,6	13,22	4 763	340	7,00
300	290	300	8.5	14	27	208	88.3	112,5	18 260	1 260	12.7	692	26,4	14,27	6310	421	7,48
320	310	300	9	15,5	27	225	97,6	124,4	22 930	1 480	13,6	814	28.2	15,16	6 985	466	7,49
340	330	300	9,5	16,5	27	243	105	133,5	27 700	1 680	14,4	925	29,9	16,00	7 436	496	7,46
360	350	300	10	17.5	27	261	112	142,8	33 090	1 890	15,2	1040	31.7	16,87	7 887	526	7,43
400	390	300	11	19	27	298	125	159,0	45 070	2 3 10	16,8	1 280	35,2	18,48	8 564	671	7,34
450	440	300	11,5	21	27	344	140	178,0	63 720	2 900	18.9	1 610	39,6	20,71	9 485	631	7,29
500	490	300	12	23	27	390	155	197,5	86 980	3 550	21,0	1970	44,1	22,90	10 370	691	7,24
550	540	300	12,5	24	27	438	166	211,8	111 900	4 150	23,0	2 3 10	48,4	25,00	10 820	721	7,15
800	590	300	13	25	27	486	178	226,5	141 200	4 790	25,0	2 680	52,8	26,91	11 270	751	7,05

caractéristiques des profils IPE

			E	Dimension	15		Masse		Caractéristiques rapportées à l'axe neutre								
Profils	h	b mm	a mm	e mm	r	Partie droite de l'âme h ₁ mm	par mètre P kg	Section A cm ²	I,	I _x V _x cm ³	i, cm	Moment statique S cm ¹	Distance des centres cm	η,	I,	l, v, cm³	i, cm
80	80	46	3.8	5,2	5	60	6,0	7,64	80,1	20,0	3,24	11,6	6,9	3,33	8,49	3,69	1.05
100	100	55	4.1	5.7	7	75	8,1	10,3	171	34,2	4.07	19,7	8.7	4,22	15.9	5,79	1,24
120	120	64	4,4	6,3	7	93	10.4	13.2	318	53.0	4,90	30,4	10,5	5,10	27,7	8.65	1.45
140	140	73	4.7	6,9	7	112	12,9	16.4	541	77.3	5,74	44,2	12,2	5,99	44,9	12,3	1,65
160	160	82	5,0	7,4	9	127	15,8	20,1	869	109	6,58	61,9	14,0	6,90	68,3	16.7	1,84
180	180	91	5,3	8,0	9	146	18,8	23,9	1 317	146	7,42	83.2	15,9	7,76	101	22,2	2,05
200	200	100	5,8	8,5	12	159	22,4	28,5	1 943	194	8,26	110	17,6	8,66	142	28,5	2,24
220	220	110	5,9	9,2	12	178	26,2	33,4	2 772	252	9,11	143	19.4	9,62	205	37,3	2,48
240	240	120	6.2	9,8	15	190	30,7	39,1	3 892	324	9,97	183	21,2	10.55	284	47.3	2,69
270	270	135	6.6	10,2	15	220	36,1	45.9	5 790	429	11,2	242	24,2	11,88	420	62,2	3.02
300	300	150	7,1	10,7	15	249	42,2	53,8	8 356	557	12,5	314	26,6	13,20	604	80,5	3.35
330	330	160	7,5	11.5	18	271	49.1	62.6	11 770	713	13.7	402	29.3	14,52	788	98.5	3,55
360	360	170	8,0	12,7	18	229	57,1	72,7	16 270	904	15.0	510	31.9	15.83	1 043	123	3,79
400	400	180	8,6	13,5	21	331	66,3	84,5	23 130	1 160	16,5	654	35,4	17,50	1 318	146	3.95
450	450	190	9,4	14,6	21	379	. 77,6	98.8	33 740	1 500	18.5	851	39.7	19.33	1 676	176	4.12
500	500	200	10,2	16,0	21	426	90,7	116	48 200	1 930	20,4	1 100	43,9	21,28	2 142	214	4,31
550	550	210	11,1	17,2	24	468	106	134	67 120	2 440	22.3	1 390	48,2	23.02	2 668	254	4,45
600	600	220	12,0	19.0	24	514	122	156	92 080	3 070	24.3	1 760	52.4	25,16	3 387	308	4.66

Repère

ECETUTC BTS - EEC	Sous-épreuve U. 51	Session 2002	Page: 15/21

PARTIE B: ETUDE DU MUR DE FACADE "Ouest".

ON DONNE:

Le dossier de plans

Les annexes de thermique.

Le schéma de la composition du mur extérieur (page 4)

Nous vous proposons d'étudier le mur de la façade "Ouest" entre les files 2 et 3.

ON DEMANDE:

Questions:

B1 Etude thermique

Compte-tenu de la composition du mur de façade, vérifier si les recommandations du Bureau d'Etude Technique (K=0,21 W/m²°K) sont bien respectées.

ANNEXES DE THERMIQUE

Valeur des résistances superficielles

	F	aroi en contac	ct avec :					
	- l'extérieur, - un passage ouvert, - un local ouvert.							
	1/h; ou Asi	1/h _e ou Rse	1/h; +1/he ou Rsi+Rse					
Paroi verticale ou faisant avec le plan horizontal un angle supérieur à 60°	0,11	0,06	0,17					
Paroi horizontale ou faisant avec le plan horizontal un angle égal ou inférieur à 60°, flux ascendant (toiture)	0,09	0,05	0,14					
flux descendant (plancher bas)	0,17	0,05	0,22					

Résistance thermique d'une lame d'air non ventilée

Position de la lame d'air	Sens du flux de chaleur	Epaisseur de la lame d'air en mm									
		5à7	7,1 à 9	9,1 à 11	11,1 à 13	14 à 24	25 à 50	55 à 300			
Horizontale	ascendant	0,11	0,12	0,13	0,14	0,14	0,14	0,14			
√erticale		0.11	0,13	0,14	0,15	0,16	0,16	0,16			
Horizontale	descendant	0,12	0,13	0,14	0,15	0,16	0,18	0,20			

Rappels

règles K77	Règles RT2000
$\frac{1}{K} = \left(\frac{1}{h_i} + \sum \frac{e_j}{\lambda_j} + \frac{1}{h_e}\right)$	$\frac{1}{U} = (R_{si} + \sum \frac{e_j}{\lambda_j} + R_{se})$

Кe	pe	re

ECETUTC BTS - EEC	Sous-épreuve U. 51	Session 2002	Page: 16/21

PARTIE C: ETUDE D'UNE CLOISON SEPARATIVE

						F	

Le plan du rez-de-chaussée Les annexes d'acoustique. Une feuille descriptive de cloisons proposées au choix (page 10)

Nous vous proposons d'étudier la cloison séparative des logements du rez-de-chaussée (file 2).

ON DEMANDE:

Questions:

- C1. Etude Acoustique
 - C1.1 D'après l'extrait de réglementation fourni, déterminer pour chacune des cloisons verticales l'isolement acoustique réglementaire vis à vis de la NRA. Utiliser pour cela le document-réponse1. (Noter les D_{nTA} réglementaires par flèches et valeurs comme celui de la façade)
 - C1.2.Déterminer l'affaiblissement acoustique minimal R=Rw+C de la cloison du rez-dechaussée file 2 séparant le séjour de l'appartement 4P Duplex et la chambre 1 du 3P.
 - C1.3 De la question précédente et en vous aidant de la documentation, sélectionner tous les types de cloisons satisfaisant à la réglementation pour cette cloison. Utiliser pour cela le document-réponsel pour ce qui concerne la "réglementation acoustique".
- C2 Bilan et choix de la constitution de la cloison
 - C2.1 Vous êtes économiste dans un bureau d'étude de conception et, à ce titre, on vous demande d'effectuer le choix technico-économique de la cloison que vous préconisez.
 - C2.2 Compléter les schémas du document-réponse 2 afin que les rôles acoustique et de sécurité incendie de la cloison soient assurés.

Repere

ECETUTC BTS - EEC | Sous-épreuve U. 51 | Session 2002 | Page : 17/21

ANNEXES D'ACOUSTIQUE

ANNEXES DE LA REGLEMENTATION ACOUSTIQUE

Extraits de l'arrêté du 30 06 1999

art. 1er

Pour l'application du présent arrêté, les locaux sont classés conformément au tableau suivant :

Logements, y compris ceux comprenant des locaux à usage professionnel	Pièces principales	Pièces destinées au séjour ou au sommeil, locaux à usage professionnel compris dans les logements					
	Pièces de service	Les pièces humides	Cuisines, salles d'eau, cabinets d'aisances.				
		Les autres pièces de service	Pièces telles que débarras, séchoirs, celliers et buanderies.				
	Dégagements	Circulations horizontales et verticales intérieures au logement telles que halls d'entrée, vestibules, escaliers, dégagements intérieurs. Locaux tels que caves, combles non aménagés, bûchers, serres, vérandas, locaux bicyclettes/voitures d'enfant, locaux poubelles, locaux vide-ordures, garages individuels					
	Dépendances						
Circulations communes	:	ticales desservant l'ensemb que halls, couloirs, escaliers	le des locaux privatifs, collectifs ;, paliers, coursives				
Locaux techniques	Locaux renferment des équipements techniques nécessaires au fonctionnement de la construction et accessibles uniquement aux personnes assurant leur entretien, notammei installation d'ascenseur, de ventilation, de chauffage.						
Locaux d'activité	Tous les locaux d'un bâtiment autres que ceux définis dans les catégories logements, circulations communes et locaux techniques.						

art. 2

Les exigences relatives aux bruits aériens intérieurs au bâtiment sont les suivantes.

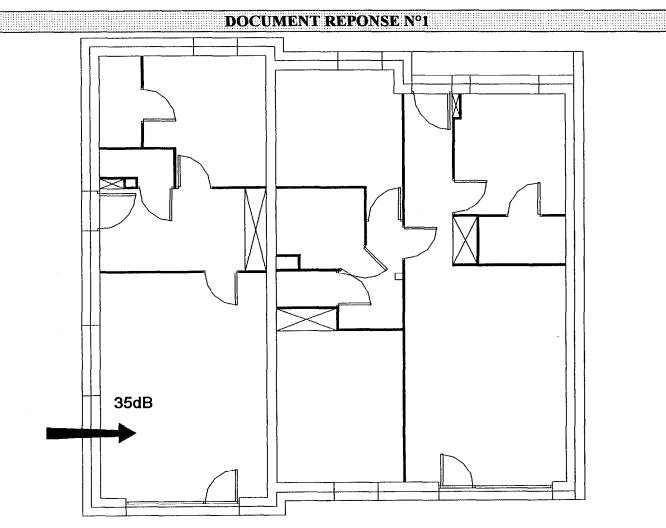
L'isolement acoustique standardisé pondéré, D_{nTA}, entre le local d'un logement, considéré comme local d'émission, et la pièce d'un autre logement du bâtiment, considérée comme local de réception, doit être égal ou supérieur aux valeurs indiquées dans le tableau ci-dessous.

pondéré DnTA (en décibels)	LOCAL DE RECEPTION: pièce d'un autre le Pièce principale		
Local d'émission : local d'un logement à l'exclusion des garages individuels		50	

L'isolement acoustique standardisé pondéré, D_{nTA}, entre une circulation commune intérieure au bâtiment, considérée comme local d'émission, et la pièce d'un logement du bâtiment, considérée comme local de réception, doit être égal ou supérieur aux valeurs indiquées dans le tableau ci-dessous.

Repère			
ECETUTC BTS - EEC	Sous-épreuve U. 51	Session 2002	Page: 18/21

Calcul de l'isolement DnT,A

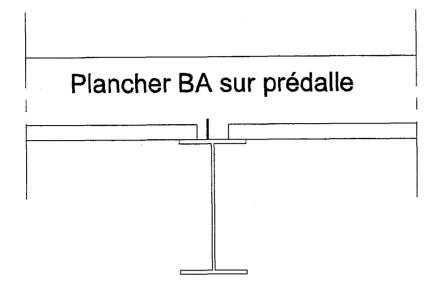

La valeur calculée de l'isolement "D_{nT,A} calculé " entre deux locaux séparés par une paroi, pour ce qui concerne les transmissions directes et latérales, est donnée par la formule suivante :

 $D_{nT,A}$ calculé = $[R_w + C] + 10 \log (0.32 \text{ V/S}) - 5 + N - (\text{Sr}/10)$ où :

- "[Rw + C] " est l'indice d'affaiblissement de la paroi étudiée, exprimé en dB.
- " V " est le volume en m³ du local de réception examiné
- "S" est la surface en m² de la paroi étudiée commune aux deux locaux
- "N" est le nombre de parois liées au séparatif et entièrement doublées de laine minérale sur la face intérieure au local de réception
- "Sr" est égale à la somme des surfaces en m², d'une part, des parois liées au séparatif dans le local de réception et doublées de mousse rigide ou d'une contre-cloison en maçonnerie légère et, d'autre part, des cloisons de distribution en maçonnerie légère liées également au séparatif dans le local de réception

Pour l'application de cette formule de calcul, on arrondit la valeur de "D_{nT,A} calculé" à la valeur entière la plus proche (en arrondissant 0,5 à 1 dB).

ECETUTO BTS - EEC Sous-épreuve U. 51 Session 2002 Page: 19/21


Cloisons				Incendie		Aco	Bilan	
N° du choix	Туре	Indice de Coût	SF structure	Réaction au feu des plaques	Possibilité d'insertion des poteaux HEA 140 conformément aux dispositions réglementaires	Affaiblissement au bruit rose de la paroi en dB	Respect de la réglementation	Bilan général de la conformité de la cloison à tous les critères
1	SL240A	131	Conforme	Conforme	onforme Conforme			
2	SLA240	193	Conforme	Conforme	Conforme			
3	SL240B	113	Conforme	Conforme	Conforme			
4	S205	100	Non	Conforme	Conforme			
5	SL210	115	Conforme	Conforme	Conforme			
6	S255	113	Conforme	Conforme	Conforme			
7	SL190	113	Conforme	Conforme	Non			
8	S205M0	122	Conforme	Conforme	Conforme			
9	D150	109	Conforme	Conforme	Non			
10	SL240FL	159	Conforme	Conforme	Conforme	<u> </u>		<u> </u>

Noter C dans les cases lorsque le critère est "Conforme" à la réglementation. Pour la colonne "Affaiblissement au bruit rose", noter le R_w+C de la cloison.

Repère

Roporo				
ECETUTC BTS - EEC	Sous-épreuve U. 51	Session 2002	Page: 20 / 21	

DOCUMENT REPONSE Nº2

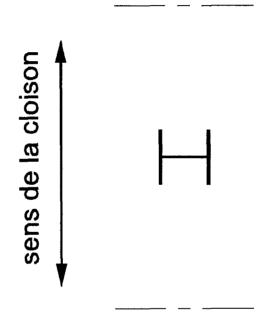


Schéma 1 (coupe verticale sur poutre)

Cloison file 2 Echelle 1 / 10 Schéma 2 (coupe horizontale sur poteau)

Repère

ECETUTE BTS - EEC Sous-épreuve U. 51 Session 2002 Page: 21/21